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Abstract

My project was born from my supervisor hypothesizing the controversial mass discrepancy acceleration
relation (MDAR) could be explained by the constant stability disk model. The model claims a galaxy’s
gas distribution adjusts to its stellar distribution to maintain a constant value for the Toomre stability
parameter, Q. To test the hypothesis, we built a set of “typical” or “template” galaxies built from the
model in the hope together, they would trace out the observed MDAR. In short, constant stability is not
the enlightening physical insight underlying MDAR. However, we showed it may serve such a purpose in
explaining other galaxy scaling relations - namely a correlation between MHI/LR and Vmax in Hi selected
galaxies. As an aside, I realised if MDAR held strictly, as it must in MOND, then the implied dark matter
profiles take forms starkly different from those predicted by dark matter simulations. Kinematical studies
of real galaxies with highly extended disks could therefore finally settle the debate between MOND and
dark matter.

1 Introduction

Throughout my studentship, I’ve been exploring the constant stability disk model of galaxies. It’s a simple, yet
effective, galaxy model whose strength comes from its physically motivated description of gas distribution - one of
the most disputed galaxy structures. Toomre (1964) provided the first comprehensive analysis regarding the stability
of a self-gravitating disk against gravitational collapse. Most usefully, he derived a parameter, Q, whose value at
each point in a galaxy is “proportional” to the stability of the disk at that point. The “constant stability disk” or
“stable disk” or “constant Q” model assumes Q takes the same value throughout a galaxy. Intuitively, if a region
has high star formation activity, the stellar winds and eventual supernovae drive away the surrounding gas hence
preventing further star formation via the gas’ gravitational collapse. Likewise, if a region has little star formation,
the gas can collapse and begin star formation. This negative feedback cycle ensures galaxies’ disks maintain stability.
Indeed, evidence has built up suggesting Q really is roughly constant within a galaxy (Quirk, 1972; Kennicutt, 1989;
Leroy et al., 2008; van der Kruit & Freeman, 2011, among others). In the last few years, a series of papers (Meurer,
Zheng & de Blok, 2013; Zheng et al., 2013; Wong et al., 2016) applied the constant Q model with encouraging success
in explaining why Hi can be used as a tracer of dark matter and predicting star formation rates and efficiencies.
Crucially, the stable disk model allows one to inject physical motivation into explaining observed galaxy properties.
My project, was to tackle the mass discrepancy acceleration relation (MDAR) with my supervisor’s hypothesis that
constant Q disks are the physical basis behind MDAR.

Ever since the pioneering efforts of Kapteyn (1922), Zwicky (1937), Rubin (Rubin, Ford & Thonnard, 1980) and
many others, the mass discrepancy problem has been an enduring mystery in physics. Wherever we look, be it
galaxy clusters or rotation curves, the visible mass is inadequate for reproducing the visible dynamics. Over time,
two main solutions have emerged - dark matter and MOdified Newtonian Dynamics (MOND). The former solves
the mass discrepancy problem by supposing the existence of vast quantities of matter which emits negligible light,
but has a non-negligible gravitational force due to its extent. The latter resolves the issue by adjusting the laws of
physics instead. In particular, it claims (Milgrom, 1983)

Fg = mµ(a/a0)a (1)

where Fg is the Newtonian gravitational force, m is the mass of the test particle, a is its acceleration, a0 is a
new fundamental constant and µ is a ”MOND interpolating function” which must satisfy µ(x) ≈ 1 for x � 1 and
µ(x) ≈ x for x � 1. Milgrom’s genius was realising Newton’s laws were never tested on acceleration scales as low
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as extragalactic astronomy; we can’t assume they still apply. If MOND is correct, the observed accelerations should
deviate from those expected from Newton’s laws only when a� a0. Milgrom (1983) suggests a0 = 1.2× 10−10m/s2

as the most appropriate. Alternatively, from a dark matter point of view, MOND’s prediction can still hold true
statistically if dark matter only exists in great quantities where accelerations are low. This is the essence of MDAR.

Naturally, astronomers went looking for MDAR; success wasn’t elusive (Sanders, 1990; Gentile, Famaey & de Blok,
2011). The most recent and comprehensive update to the MDAR was by McGaugh, Lelli & Schombert (2016) - her-
after MLS16. Their extensive sample of 2693 data points from 153 galaxies found almost incontrovertible evidence
MDAR exists, at least when averaged across galaxies, with the form

gobs =
gbar

1− e−
√
gbar/g†

(2)

where gbar is the radial acceleration due to the the baryons’ gravity alone under standard Newtonian mechanics
(“baryons” meaning normal, visible matter even though electrons and the like are not baryons), gobs is the observed
radial acceleration and g† = 1.2 × 10−10m/s2. MLS16 threw down the gauntlet, claiming “the observed coupling
between gobs and gbar demands a satisfactory explanation.”

It did not take long for responses to come rushing in. Milgrom (2016a) proclaimed a ”shot in the arm” for MOND

with g† = a0 and 1− e−
√
gbar/g† effectively playing the role of µ(a/a0) in equation (1). More challenging, one might

imagine, is explaining MDAR in a dark matter dominated universe. There have been several successes in simulations
(e.g. see Keller & Wadsley, 2016; Ludlow et al., 2017; Navarro et al., 2017), although their rigour has occasionally
been questioned (e.g. by Milgrom, 2016b).

We have a slightly different approach. Rather than trying to model galaxies based on MOND or dark matter
tenets, we apply properties we believe to be observationally true - including constant Q. These include long estab-
lished observational results such as the Tully Fisher Relation (TFR) (Tully & Fisher, 1977), flat rotation curves,
mass to light ratios, exponential stellar disks (Freeman, 1970) etc. Therefore any theory explaining existing results,
will explain MDAR. Rather than a new law, we aim to show MDAR is a consequence of what we already knew about
galaxies. Hence, we build a set of “model” or “template” galaxies from existing observational results and constant
Q in the hope that together they will trace out MDAR while highlighting the role of stable disks.

2 Constant stability model

I begin by describing the theoretical and empirical basis underlying our galaxy models. Note that log always refers to
base 10; logarithms to base e will always be ln. Furthermore, I’ve taken the liberty to change variables’ notation from
the symbols used by the authors who originally defined them. All code required to reproduce the calculations and
graphs is available at https://github.com/VirinchiRallabhandi/GalaxyModels (which is perhaps where you found
this report anyway).

2.1 How to build a galaxy

There is strong evidence suggesting galaxies’ disks are truncated at a particular radius, Rmax, beyond which the
baryonic mass densities fall off abruptly and rapidly (see discussion in Meurer et al., 2018). Ultimately, our model
is built upon one independent variable, Vfinal, the rotation speed of objects orbiting the galactic centre at Rmax. It
can be quite challenging to keep track of all the scaling relations we are about to exercise. Hence I include a network
of relations employed, Fig. 1, to assist readers in understanding the way we build a galaxy from Vfinal.

Our galaxy models are essentially a more sophisticated and complete implementation of models by Wong et al.
(2016). Our models have two components - a gas disk and a stellar disk. The dark matter is the only “free parame-
ter” and will be dealt with soon (we say “only one free parameter,” but one must keep in mind John von Neumann
who boasted “with four free parameters I can fit an elephant; with five I can make him wiggle his trunk”). Both
disks are truncated at the same radius, Rmax. Astonishingly, Rmax happens to be the simplest quantity to deduce.
From Meurer et al. (2018),

1Gy =
2πRmax
Vfinal

=⇒ Rmax =
Vfinal × 1Gy

2π
(3)
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Figure 1: A network of galaxy scaling relations employed to get the MDAR for a galaxy out of our single independent
variable, Vfinal. A→ B means property A is required to deduce property B.

Equally surprisingly, from Vfinal alone, one can deduce the entire rotation curve, V (r). The “universal rotation
curve” (URC) of Persic, Salucci & Stel (1996) provides a template which all spiral galaxies should follow. The URC
achieves the rare treble of analytic foundation, observational agreement and endurance to time hence being suitable
for our purpose. The URC’s frankly horrifying form (Persic, Salucci & Stel, 1996; Persic & Salucci, 1991) is

V (r)2 = V 2
0

(
1.97a(r/Ropt)

1.22

(0.61 + (r/Ropt)2)1.43
+

b(r/Ropt)
2

(r/Ropt)2 + c

)
(4)

where

a = 0.72 + 0.44 log λ (5)

b = 1.6e−0.4λ (6)

c = 2.25λ0.4 (7)

V 2
0 =

40000λ0.82

0.8 + 0.49 log λ+ 0.75e−0.4λ

0.47+2.25λ0.4

(8)

Ropt = 13
√
λ (9)

λ = L/L∗ (10)

L∗ = 6× 1010/h2
50 LB� (11)

For equation (4) alone, r is in units of kPc, V (r) is in units of km/s and L is the galaxy’s luminosity. Hence, all
parameters required to deduce V (r) come from L. However, finding L from Vfinal is difficult. Instead, since knowing
λ is equally effective, we find the value of λ, by iterative improvement, which gives V (Rmax) = Vfinal.

With V (r), we have sufficient information to find

Vmax = max
r∈[0,Rmax]

V (r) (12)

The URC was originally only calibrated for 75 km/s ≤ Vmax ≤ 300 km/s which corresponds to 75 km/s ≤ Vfinal ≤
255 km/s. Hence, our model is restricted to this range.

With Vmax, a slew of scaling relations are now within our grasp. We assume the stellar component takes the
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canonical (Freeman, 1970; van der Kruit & Freeman, 2011) form

ρ∗(r, z) = ρ0e
−r/r0 sech2

(
z

2z0

)
(13)

where r0 and z0 are the (yet to be determined) “scale length” and “scale height” respectively. van der Kruit &
Freeman (2011) find z0 to simply be

z0 = ((0.45± 0.05)(Vmax/(100km/s))− (0.14± 0.07)) kpc (14)

As we are trying to model a typical galaxy, the scatter may be ignored. Finding r0 and ρ0 requires a more scenic route.

Wong et al. (2016) found a number of empirical correlations between R band observations and physical quanti-
ties using the Survey for Ionisation in Neutral Gas Galaxies (SINGG) and the Survey for Ultraviolet emission in
Neutral Gas Galaxies (SUNGG) data. In particular,

MR = −3.90− 7.622 log Vmax (15)

log(M∗/LR) = −1.578− 0.0856MR (16)

logµR = 5.38 + 1.176 log Vmax (17)

where Vmax is in km/s, MR is the galaxy’s R band absolute AB magnitude, M∗/LR is the stellar mass to light
ratio in solar units and µR is the galaxy’s effective surface brightness in L�/kpc

2. While most SINGG and SUNGG
galaxies reside in the “blue cloud,” we can still use these relations as most rotationally supported galaxies form the
“blue cloud,” rather than “red sequence” anyway. Consequently, using equations (15) - (17), Wong et al. (2016)
derive

r0 =

√
10−0.4(MR−4.61)

5.647πµR
(18)

The same equations give us the total stellar mass, M∗, by

M∗ = LR10−1.578−0.0856MR (19)

= 10−0.4(MR−4.61) × 10−1.578−0.0856MR (20)

However,

M∗ =

∫ ∞
−∞

∫ ∞
0

2πrρ∗(r, z) drdz (21)

= 4π

∫ ∞
0

∫ ∞
0

ρ0re
−r/r0 sech2

(
z

2z0

)
drdz (22)

= 8πρ0z0r
2
0 (23)

using standard integration techniques.

∴ ρ0 =
M∗

8πz0r2
0

(24)

and hence the stellar mass distribution is determined.

We apply the constant Q disk model to determine the gas distribution, ρg(r, z). Toomre (1964), found the sta-
bility of a disk at a given point, its propensity to resist gravitational collapse there, is “proportional” to his stability
parameter

Q =
σκ

πGΣ
(25)

where, at a particular point, σ is the material’s velocity dispersion, Σ is the material’s surface mass density and κ is
the epicycle frequency defined as

κ(r) =
V (r)

r

√
2

(
1 +

r

V (r)

dV (r)

dr

)
(26)
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For a cylindrically symmetric volume mass density, ρ(r, z), the appropriate definition of surface mass density is

Σ(r) =

∫ ∞
−∞

ρ(r, z) dz = 2

∫ ∞
0

ρ(r, z) dz (27)

While Toomre (1964) considered disks made from a single material, our galaxy models have two interacting com-
ponents - stars and gas. We require an expression of Q which accommodates our model’s complexity. Zheng et al.
(2013) tried various prescriptions for a “two fluid” (two material) stability parameter, Q2f . The prescription closest
to the elusive combination of simplicity and accuracy is by Wang & Silk (1994), who derived

1

Q2f
=
πGΣg
σgκ

+
πGΣ∗
σ∗,rκ

(28)

where σg is the gas’ velocity dispersion, σ∗,r is the stars’ radial velocity dispersion and Σg and Σ∗ are the surface
mass densities of the gas and stars respectively.

∴ Σg =
σgκ

πGQ2f
− σgΣ∗

σ∗,r
(29)

We can in fact derive all the terms on the right hand side. Note that stars are assumed collisionless hence allowing
different velocity dispersions in different directions. Gas however, must have the same velocity dispersion in each
direction.

Σ∗(r) =

∫ ∞
−∞

ρ∗(r, z) dz (30)

= 2

∫ ∞
0

ρ0e
−r/r0 sech2

(
z

2z0

)
dz (31)

= 4z0ρ0e
−r/r0 (32)

σg is typically assumed to be a constant (Zheng et al., 2013; Leroy et al., 2008), but in reality this isn’t the case
(O’Brien, Freeman & van der Kruit, 2010; Ianjamasimanana et al., 2015). The most recent and comprehensive
analysis by Ianjamasimanana et al. (2015) finds

σg(r) = σ0e
−r/rg (33)

with rg = 3.7r25. However for Ianjamasimanana et al. (2015)’s sample, there is a very strong correlation between r0

and r25. Re-analysing their sample, I found

r25 = (4.426r0/kpc− 0.5507) kpc (34)

with a correlation coefficient of 0.91486.

∴ rg = 3.7(4.426r0/kpc− 0.5507) kpc (35)

is equally valid. Ianjamasimanana et al. (2015) also find the mean gas velocity dispersion to be 8 km/s regardless of
morphology.

∴ 8 km/s =
1

Rmax

∫ Rmax

0

σ0e
−r/rg dr (36)

=
σ0rg(1− e−Rmax/rg )

Rmax
(37)

∴ σ0 =
Rmax × 8 km/s

rg(1− e−Rmax/rg )
(38)

Here I’ve weighted each radius equally in equation (36). Alternatively, I could weight outer radii higher than inner
radii because there’s greater area in a ring of radius dr at higher radii. It was unclear to me from Ianjamasimanana
et al. (2015) which was more appropriate and I essentially made an arbitrary choice. For σ∗,r, we adopt the approach
of Zheng et al. (2013) and Leroy et al. (2008) who find a “typical” velocity dispersion ellipsoid has

σ∗,r = 1.67σ∗,z (39)
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for which van der Kruit & Freeman (2011) derive

σ∗,z(r) =
√

2πGΣ∗(r)z0 (40)

= 2z0

√
2πGρ0e−r/r0 (41)

We’re left with the matter of Q2f . Our fundamental gas distribution proposition is constant Q2f . But which con-
stant? As aforementioned, many scientists observe a constant Q in their galaxies, but unfortunately they do not
report the same value; Q2f varies between at least 1.5 and 2.5 across samples (van der Kruit & Freeman, 2011). For
our model, we’ve taken the average value, Q2f = 2. While this may be somewhat unsatisfactory, there may be some
physical justification from Q2f = 2 from Fig. 21 and discussion in section 7.

Therefore, we now have all the ingredients to find Σg via equation (29). Next, we must translate the 2D sur-
face mass density, Σg(r), into a 3D volume mass density, ρg(r, z). van der Kruit (1981) showed a gas disk responding
to a stellar disk’s force field must maintain

ρg(r, z) = ρg(r, 0) sech2p

(
z

zg

)
(42)

where zg is the gas disk’s scale height and

p =
σ2
∗,z

σ2
g,z

(43)

the ratio of the stellar and gas velocity dispersions in the z direction squared. Unlike z0, zg varies radially. van der
Kruit (1981) finds to within 3% accuracy,

W (r) =
1.7σg,z√

2πGpρ∗(r, 0)
(44)

where W (r) is the disk’s full width at half maximum at radius r and σg,z = σg/
√

3 as the gas’ velocity dispersion is
the same in all directions. Furthermore, due to the exponential decline in ρ∗(r, 0),

W (r) ∝ er/2r0 (45)

i.e. the gas disk flares. Unfortunately, equation (44) requires p ≥ 1 ⇐⇒ σ∗,z ≥ σg,z, which cannot be ensured
as σ∗,z ∝ e−r/2r0 by equation (41). It seems van der Kruit (1981) doesn’t really consider p < 1 to be possible and
we thought it may make sense for the stellar velocity dispersion to be maintained by the gas velocity dispersion.
Therefore, since 2r0 < rg and hence the stellar velocity dispersion falls faster than the gas velocity dispersion, we
adjust equations (41) and (39) minimally to

σ∗,z(r) = 2z0

√
2πGρ0e−r/r0 + σg,z(Rmax) (46)

σ∗,r(r) = 1.67× 2z0

√
2πGρ0e−r/r0 + σg,z(Rmax) (47)

hence ensuring p ≥ 1. Now with equations (44) and (42) we get

1

2
= sech2p

(
W

2zg

)
(48)

which is a quadratic in eW/2zg and can be solved to get

zg(r) =
W (r)

2 ln
(
21/2p +

√
21/p − 1

) (49)

which leaves only ρg(r, 0) to get in equation (42). From equations (29) and (27) we get

ρg(r, 0) =
Σg(r)

2zg
∫∞

0
sech2p(x) dx

(50)

The integral can be evaluated explicitly in terms of the hypergeometric function, 2F1, but Simpson’s rule with
δx = 0.01 and an integral upper bound of 10 works for our purpose.

Having now fully determined ρ∗(r, z), ρg(r, z) and V (r), we can deal with dark matter. Dark matter is essen-
tially the one “free parameter” of our model. In observations, the only way dark matter reveals its distribution is
by the discrepancy between the observed rotation curves and the those predicted from the visible matter alone. We
adopt the same approach; the dark matter is assumed to have a distribution which reproduces V (r) given ρ∗(r, z)
and ρg(r, z).
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Figure 2: A visualisation of equation (52) which extends the stellar and mass distributions beyond Rmax to ensure a
smooth truncation to the disk. Note that for this technique to make sense, we need a, r0 > 0 and b < 0 - conditions
which luckily held for all our models.

2.2 Limitations

Alas, the truth is never pure and rarely simple. I claimed the constant Q model had “encouraging,” not “overwhelm-
ing” success in the introduction. Indeed, to make our model more realistic, it must be adjusted in multiple ways,
mostly in the inner and outer parts of galaxies. These adjustments are paramount for finding gbar because it’s an
integrated quantity; it relies on the model being accurate everywhere. Some past work (e.g. Meurer, Zheng & de
Blok, 2013; Zheng et al., 2013) could ignore the constant Q model’s deficiencies because they focused only on local
quantities; we have no such luxury.

Often, to maintain constant Q, a galaxy requires starburst level gas densities in its centre, where as most do not have
long term starbursts (Wong et al., 2016). Indeed, while Q remains roughly constant for large swathes of galaxies,
it rises, sometimes quite significantly, in the very inner and outer parts (Meurer, Zheng & de Blok, 2013; Zheng et
al., 2013). Therefore, to prevent our models from predicting unrealistically high gas densities at their centres, we
decided for r < r0, Σg(r) will be a linear tangent extrapolation to the Σg(r) profile at r = r0.

Moving to the outer parts, matter cannot simply disappear at Rmax. Its distribution is truncated for r > Rmax, but
ρ∗(r, z) and ρg(r, z) must still fall to 0 in a smooth manner (our inner pure mathematician interjects at this point to
clarify that “smooth” is intended in the “English language” sense of the word and not the mathematical meaning of
infinite differentiability). We redefined the stellar and gas surface mass densities as

Σ∗(r) =

{
4z0ρ0e

−r/r0 0 ≤ r ≤ Rmax
max(a∗ + b∗e

r/r0 , 0) r ≥ Rmax
(51)

Σg(r) =

{
σgκ

πGQ2f
− σgΣ∗

σ∗,r
0 ≤ r ≤ Rmax

max(ag + bge
r/r0 , 0) r ≥ Rmax

(52)

with a∗, b∗, ag and bg fit such that Σ∗ and Σg are continuously differentiable for r < Rf with Rf defined as the radius
such that Σ∗(r) = Σg(r) = 0 for all r ≥ Rf , i.e. the disk ends at Rf even after the a+ ber/r0 extensions are added.
Finding ag and bg required deducing dΣg/dr numerically leading to tiny discontinuities in Σg(r). Fig. 2 visualises
the rather convoluted definition I just gave. These “discontinuities” are evident in figures 4, 8 and 12 discussed
in section 3. Note, defining Rf implicitly assumes Σ∗(r) and Σg(r) are decreasing at r = Rmax. Without these
extensions to the Σ∗ and Σg profiles, the gravitational force would have a sudden and unrealistic rise for r ≈ Rmax.
Intuitively, this is because particles at Rmax would not be experiencing any outward force at all where as particles
closer to the centre experience forces inwards and outwards due to other particles on either side. One often assumes
particles only feel the force of other particles at lower radii, but this is only true if the mass distribution has spherical
symmetry; it is folly for the cylindrical symmetry of galaxies.

Finally, our models are built upon a single independent variable. It is curious such models were possible since
dark matter halos are thought to be set by two parameters - Vmax and “concentration,” c, which are proxies for mass
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Figure 3: A visual aid for setting up equation (57) regarding dΦbar

and angular momentum respectively. Perhaps the discrepancy is an indication of oversimplification somewhere in our
models. Wong et al. (2016) lay the blame on the URC, which we too find to be flawed in section 5. They attempted
to explore c further by dilating and contracting the URC and baryonic mass distributions, a novel approach which
we unfortunately didn’t have time to repeat.

2.3 Deducing physical quantities

In testing MDAR, the two paramount quantities are the radial acceleration observed and that due to the baryons
alone, gobs and gbar respectively. Throughout both MLS16 and our paper, it is assumed we are only dealing with
rotationally supported galaxies and hence disk objects are travelling in perfect circles around the galactic centre,
barring any local perturbations. Therefore,

gobs =
V (r)2

r
(53)

at each radius, r, with V (r) deduced from the URC, equation (4). The simplest way to find gbar is via the gravitational
potential of the baryons, Φbar. Then,

gbar = −∂Φbar
∂R

(54)

From Fig. 3, for a 3D, volume mass distribution, ρ(r, z), the gravitational potential a distance R along the galaxy’s
midplane is

dΦ = −Gdm
y

(55)

= −Gρr dzdθdr√
z2 + x2

(56)

= − Gρr dzdθdr√
z2 + r2 +R2 − 2rR cos θ

(57)

If ρ(r, z) = ρbar(r, z) = ρ∗(r, z) + ρg(r, z) is the volume mass density of the baryons.

Φbar =

∫ ∞
0

∫ 2π

0

∫ ∞
−∞
− Gρr dzdθdr√

z2 + r2 +R2 − 2rR cos θ
(58)

= −4

∫ Rf

0

∫ π

0

∫ ∞
0

Gρr dzdθdr√
z2 + r2 +R2 − 2rR cos θ

(59)
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∴ gbar = −∂Φbar
∂R

(60)

= 4
∂

∂R

∫ Rf

0

∫ π

0

∫ ∞
0

Gρr dzdθdr√
z2 + r2 +R2 − 2rR cos θ

(61)

= 4

∫ Rf

0

∫ π

0

∫ ∞
0

∂

∂R

Gρr dzdθdr√
z2 + r2 +R2 − 2rR cos θ

(62)

= −4

∫ Rf

0

∫ π

0

∫ ∞
0

Gρr(R− r cos θ) dzdθdr

(z2 + r2 +R2 − 2rR cos θ)3/2
(63)

= −4G

∫ Rf

0

r

∫ π

0

(R− r cos θ)

∫ ∞
0

ρ dzdθdr

(z2 + r2 +R2 − 2rR cos θ)3/2
(64)

We have few options but to evaluate this integral numerically for the deduced mass distribution of baryons, ρbar(r, z).
Unfortunately, we are forced to cut-off the dz integral because computers can’t deal with ∞; we’ve chosen to do so
at 6 scale heights because sech2(z/2z0)|z=6z0 = 0.01.

To check for consistency with various cosmological models or observations (see section 3) one may wish to de-
duce the implied dark matter density at each radius. It can be done by Poisson’s equation, ∇2Φ = 4πGρ. Using the
Laplacian in spherical polar coordinates for a spherically symmetric function,

4πGρ(r) =
1

r2

d

dr

(
r2 dΦ

dr

)
(65)

∴ ρ(r)DM =
1

2πGr

dΦDM
dr

+
1

4πG

d2ΦDM
dr2

(66)

We can deduce dΦDM
dr , and hence d2ΦDM

dr2 by

dΦDM
dr

= gDM (67)

= gobs − gbar (68)

both of which are know from equations (53) and (64) respectively. I reprise this method of recovering ρDM again in
section 6 for a more complete exploration of its implications.

3 Example galaxy models

I’d like to present some example galaxies built via the prescription in section 2. I present a low, moderate and
high mass galaxy corresponding to Vfinal = 75 km/s, 165 km/s and 255 km/s respectively. In figures 6, 10 and 14,
I’ve removed the dark matter density data for the first scale length because the dark matter profile is cuspy; if I
had plotted the complete data, the graph would look similar to step function due to the axis ranges. With the
first scale length removed, all three are well fit by a cored isothermal sphere profile as shown. Another trend vis-
ible across the examples - figures 4, 8, 12, 5, 9 and 13 - is the increasing amount and influence of gas as Vfinal reduces.

Figures 7, 11 and 15 show how different galaxies trace out different regions of the gbar − gobs plane. Exactly like
MLS16, by putting together data from multiple different galaxies, we can fill a large extent of the relation. However,
these figures show eccentric twists to the gbar − gobs curve of each galaxy in its inner parts. I believe the problem
is a combination of rotation curves being somewhat uncertain and constant Q being somewhat shaky - even after
my adjustment - in galaxies’ centres. Following Meurer, Zheng & de Blok (2013), it might be best considering only
the middle 50% of a galaxy’s radial range in the MDAR plots i.e. only consider the gbar(r) − gobs(r) relation for
0.25 ≤ r/Rf ≤ 0.75.

Overall, I don’t think there are any great surprises found in our example galaxies.
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Figure 4: The gas surface mass density profile for a galaxy
with Vfinal = 75 km/s as per equation (29)

Figure 5: The rotation curves due to each component for
a galaxy with Vfinal = 75 km/s

Figure 6: The implied dark matter density for a galaxy
with Vfinal = 75 km/s as per equation (66)

Figure 7: gobs versus gbar in a galaxy with Vfinal =
75 km/s compared to the best fit curve to MLS16’s data

Figure 8: The gas surface mass density profile for a galaxy
with Vfinal = 165 km/s as per equation (29)

Figure 9: The rotation curves due to each component for
a galaxy with Vfinal = 165 km/s
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Figure 10: The implied dark matter density for a galaxy
with Vfinal = 165 km/s as per equation (66)

Figure 11: gobs versus gbar in a galaxy with Vfinal =
165 km/s compared to the best fit curve to MLS16’s data

Figure 12: The gas surface mass density profile for a
galaxy with Vfinal = 255 km/s as per equation (29)

Figure 13: The rotation curves due to each component
for a galaxy with Vfinal = 255 km/s

Figure 14: The implied dark matter density for a galaxy
with Vfinal = 255 km/s as per equation (66)

Figure 15: gobs versus gbar in a galaxy with Vfinal =
255 km/s compared to the best fit curve to MLS16’s data

11



Figure 16: The MDAR compiled from our model galaxies using the prescription in section 2. The cyan is actually
composed of individual data points from our model but they are so close together it looks like a continuous region.

4 Effect of constant Q on MDAR

Finally, I was ready to compile the MDAR curves traced by model galaxies with the full range of Vfinal allowed by
the URC. On face value, the result (Fig. 16) looks excellent. However, Fig. 16 must be taken with a pinch of salt.
I’ve only plotted the middle 50% of each model galaxy’s radial range as suggested earlier; with the complete data,
the result is less clear. Yet, limitations on radial range were the least of our concerns. About seven weeks into my
ten week studentship, we were thankfully informed by Aaron Ludlow our approach of reformulating MDAR in terms
of existing observational results had already been attempted before. Most notably, Wheeler, Hopkins & Dore (2018)
showed - albeit with slightly simplistic assumptions - MDAR was closely linked to the baryonic Tully Fisher relation
(BTFR) - a variation of equation (15). The way we’ve used equation (15) couples the stars to the rotation curve, but
says very little about the gas - the component we hypothesized to drive MDAR. Furthermore, it turns out Wheeler,
Hopkins & Dore (2018) weren’t even the first to connect MDAR with Tully Fisher - Yegorova & Salucci (2007) did
it 12 years ago with their “radial Tully Fisher relation.” As a way to remove the clouds of delusion from our eyes, we
remade Fig. 16 but with stars only (Fig. 17) and then with gas only (Fig. 18) to isolate the effects of the two. Fig.
17 shows exemplary agreement between the MDAR traced by stars and MLS16’s result. Furthermore, almost the
full radial extent is usable because the stable disk model’s limitations only affect gas. The antithesis of the success
demonstrated by Fig. 17 is failure demonstrated by Fig. 18. The gbar−gobs relation traced by a galaxy with a single
constant Q gas disk alone would not be mistaken for the curve of MLS16 by anyone. Fig. 18 shows gbar due to a
constant Q disk hardly responds to the gobs set by the rotation curve.

The writing was on the wall. Constant Q is not the physical basis underlying MDAR as hypothesised. Instead,
it’s a distraction from the more fundamental relation between Tully Fisher and MDAR.
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Figure 17: MDAR compiled from our model galaxies but with stars only (gbar = g∗) to isolate the relationship
between the stellar disk and MDAR

Figure 18: MDAR compiled model galaxies containing a constant stability gas disk alone (gbar = ggas) to see whether
constant Q is really driving MDAR
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Figure 19: The differing rotation curves generated by the URC of spiral and dwarf disk galaxies
.

5 A note on the “universal” rotation curve

I cannot conclude discussions on the stable disk model without noting a caveat to the URC. Assumptions about the
rotation curve fundamentally affect ρg(r, z) because the epicycle frequency,

κ(r) =
V (r)

r

√
2

(
1 +

r

V (r)

dV (r)

dr

)
(69)

relies heavily upon V (r). We found it worth reflecting on the assumed rotation curve. The URC as quoted in equation
(4) is only calibrated for spiral galaxies and there have been multiple attempts to extend the URC to accommodate
for dwarf disk galaxies (Karukes & Salucci, 2016; Salucci et al., 2012; Kapferer et al., 2006) with the most recent
and successful being Karukes & Salucci (2016). Frankly, their paper was very difficult to understand. Rather than
invoking their mysterious “compactness” parameter which hardly changes between galaxies and has only a very small
impact on the predicted rotation curves, I fit my own curve to their normalised data and de-normalised it by simply
scaling by Vmax and Ropt as predicted by our models. My fit to their data was

V (r) = Vmax(1− e−r/1.9905r0) (70)

I felt there may be some physical significance that 1.9905 ≈ 2 and the “true curve” may be V (r) = Vmax(1−e−r/2r0).
Sadly, the dwarf disk extension to the URC, equation (70), does not continuously match on to the URC of spiral
galaxies, equation (4). The boundary between the two regimes is Vmax ≈ 70 km/s. As Fig. (19) shows, the two
regimes give somewhat different rotation curves. Therefore, the URC is not as “universal” as it’s made out to be.
Furthermore, it may indicate oversimplification in the URC. As previously mentioned in section 2.2, dark matter
halos are said to be built from two parameters where as the URC and our models are built from only one. The
variation in slope between the two URCs in Fig. 19 suggests another independent variable is required to encompass
the true variety of rotation curves.

6 Final remarks on MDAR

By the end of the project, I felt the literature regularly framed the relationship between MDAR and dark matter
distribution as indirect. Yet, it may not be. MLS16’s results are popularised in the form

gobs =
gbar

1− e−
√
gbar/g†

(71)
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However, MDAR can be rephrased as a link between the acceleration due to baryonic matter and the acceleration
due to the implied dark matter.

gDM = gobs − gbar (72)

=
gbar

1− e−
√
gbar/g†

− gbar (73)

=
gbar

e
√
gbar/g† − 1

(74)

MLS16 only makes a passing reference to equation (74) and I feel its implications aren’t fully appreciated. From
gDM , one can deduce the dark matter distribution, ρDM , via Poisson’s equation. We may assume ρDM , and hence
ΦDM , are spherically symmetric. Whether we choose gDM = dΦDM

dr or gDM = −dΦDM
dr is only a sign convention and

here I’m using the positive convention for all relevant relations to avoid confusing the issue. Therefore, applying the
(now much simpler) form of the Laplacian in spherical polar coordinates,

4πGρDM = ∇2ΦDM (75)

=
1

r2

d

dr

(
r2 dΦDM

dr

)
(76)

=
2

r

dΦDM
dr

+
d2ΦDM
dr2

(77)

=
2gDM
r

+
dgDM
dr

(78)

=
2gbar

r
(
e
√
gbar/g† − 1

) +
dgDM
dgbar

dgbar
dr

(79)

=
2gbar

r
(
e
√
gbar/g† − 1

) +
e
√
gbar/g† − 1− gbar

(
1

2
√
gbarg†

e
√
gbar/g†

)
(
e
√
gbar/g† − 1

)2 dgbar
dr

(80)

=
2gbar

r
(
e
√
gbar/g† − 1

) +
e
√
gbar/g†

(
1− 1

2

√
gbar/g†

)
− 1(

e
√
gbar/g† − 1

)2 dgbar
dr

(81)

∴ ρDM =
gbar

2πGr
(
e
√
gbar/g† − 1

) +
e
√
gbar/g†

(
1− 1

2

√
gbar/g†

)
− 1

4πG
(
e
√
gbar/g† − 1

)2 dgbar
dr

(82)

These equations hold generally if we assume MDAR always holds. To get ρDM for actual galaxies, we must make
measurements or observations of gbar. As an algebraically simpler primer, I first consider the asymptotic behaviour
of equation (82). If gbar � g†, as it will be in the outer regions of all galaxies,

e
√
gbar/g† ≈ 1 +

√
gbar/g† (83)

Furthermore,

gbar � g† =⇒ gbar
g†
� 1 =⇒ gbar

g†
�
√
gbar
g†

(84)

Therefore, for gbar � g†,

ρDM ≈
gbar

2πGr
√
gbar/g†

+
(1 +

√
gbar/g†)(1− 1

2

√
gbar/g†)− 1

4πGgbar/g†

dgbar
dr

(85)

=
gbar

2πGr
√
gbar/g†

+
1− 1

2

√
gbar/g† +

√
gbar/g† − 1

2gbar/g† − 1

4πGgbar/g†

dgbar
dr

(86)

=
gbar

2πGr
√
gbar/g†

+

√
gbar/g† − gbar/g†

8πGgbar/g†

dgbar
dr

(87)

≈ gbar

2πGr
√
gbar/g†

+

√
gbar/g†

8πGgbar/g†

dgbar
dr

(88)

=

√
gbarg†

2πGr
+

1

8πG

√
g†
gbar

dgbar
dr

(89)
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Generally, in the outskirts of galaxies, the rotation curve due to baryons alone is very close to Keplerian. Hence, we
can approximate gbar as arising from a point mass, M , in regions where gbar � g†. Then, one gets

gbar =
GM

r2
(90)

∴
dgbar
dr

= −2GM

r3
(91)

Substituting these expressions into equation (89) yields

ρDM ≈

√
GM
r2 g†

2πGr
− 1

8πG

√
g†r2

GM

2GM

r3
(92)

=
1

2πr2

√
Mg†
G
− 1

4πr2

√
Mg†
G

(93)

=
1

4πr2

√
Mg†
G

(94)

Therefore, if MDAR holds indefinitely in a galaxy, the dark matter distribution must converge on the ρDM ∝ 1
r2 of

an isothermal sphere, but not the ρDM ∝ 1
r3 typical of dark matter simulations. Equivalently, if MDAR holds indef-

initely, then rotation curves must remain flat indefinitely, unlike the eventually declining rotation curves predicted
by dark matter simulations.

Having examined the asymptotic behaviour, I shifted my focues to the complete radial range. We can approxi-
mate gbar as arising from a thin, pure exponential disk - whose surface mass density is given by Σ(r) = Σ0e

−r/r0 .
This assumption forces one to ignore low mass galaxies because gas would have a non-negligible contribution to
gbar. I accept this constraint because the gas distribution in galaxies is disputed anyway (e.g. notice the contrast
between our stable disk approach and the exponential disk approach taken by Karukes & Salucci, 2016, in their mass
modelling). Therefore, assumptions made about gas may compromise our subsequent deductions. By focusing on
medium to high mass galaxies, the gas contribution can be more or less ignored. Serendipitously, a thin exponential
disk allows analytic subsequent analysis. Finally, defining x = r

2r0
and letting I and K be the modified Bessel

functions of the first and second kind respectively, Freeman (1970) derives equation (95).

gbar =
πGΣ0r

r0

(
I0(x)K0(x)− I1(x)K1(x)

)
(95)

∴
dgbar
dr

=
gbar
r

+
πGΣ0r

2r2
0

(
I1(x)K0(x)− I0(x)K1(x)− 1

2
K1(x)

(
I0(x) + I2(x)

)
+

1

2
I1(x)

(
K0(x) +K2(x)

))
(96)

Substituting equations (95) and (96) into equation (82) yields the implied dark matter distribution for an exponential
disk galaxy which strictly follows MDAR. Past the first several scale lengths, the result must converge on equation
(94) with M = 2πΣ0r

2
0 for an exponential disk. However, ρDM from equation (82) is not particularly insightful on

its own. Much of the fuss regarding dark matter density profiles is about the exponent of their best power law fit,
rα, in different regions. The most important topics are the power law exponent in the very inner and outer parts of
galaxies. To find α, I found d ln ρDM

d ln r - a task so tedious it might be too cruel as a torture technique for misbehaving
calculus students. Using equation (82),
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d ln ρDM
d ln r

=
d ln ρDM
dρDM

dρDM
dr

dr

d ln r
(97)

=
r

ρDM

dρDM
dr

(98)

=
r

ρDM

d

dr

(
gbar

2πGr
(
e
√
gbar/g† − 1

) +
e
√
gbar/g†

(
1− 1

2

√
gbar/g†

)
− 1

4πG
(
e
√
gbar/g† − 1

)2 dgbar
dr

)
(99)

=
r

ρDM

[
− gbar

2πr2
(
e
√
gbar/g† − 1

) +
e
√
gbar/g†

(
1− 1

2

√
gbar/g†

)
− 1

2πGr
(
e
√
gbar/g† − 1

)2 dgbar
dr

+ (100)

1

4πG
(
e
√
gbar/g† − 1

)4{(e√gbar/g† − 1
)2( 1

2
√
gbarg†

e
√
gbar/g†(1− 1

2

√
gbar/g†)−

1

4
e
√
gbar/g†

√
1

gbarg†

)
(101)

− 2(e
√
gbar/g† − 1)

(
1

2

√
gbar/g†e

√
gbar/g†

)(
e
√
gbar/g†(1− 1

2

√
gbar/g†)− 1

)}(
dgbar
dr

)2

(102)

+
e
√
gbar/g†(1− 1

2

√
gbar/g†)− 1

4πG(e
√
gbar/g† − 1)2

d2gbar
dr2

]
(103)

which requires equations (95) and (96) to get

d2gbar
dr2

= −gbar
r2

+
1

r

dgbar
dr

+
πGΣ0

2r2
0

(
I1(x)K0(x)− I0(x)K1(x)− 1

2
K1(x)

(
I0(x) + I2(x)

)
+

1

2
I1(x)

(
K0(x) +K2(x)

))
(104)

+
πGΣ0r

4r3
0

[
1

2

(
I0(x) + I2(x)

)
K0(x)− 2I1(x)K1(x) +

1

2

(
K0(x) +K2(x)

)
I0(x) (105)

+
1

2

(
K0(x) +K2(x)

)(
I0(x) + I2(x)

)
− 1

2
K1(x)

(
I1(x) +

1

2

(
I1(x) + I3(x)

))
(106)

− 1

2
I1(x)

(
K1(x) +

1

2

(
K1(x) +K3(x)

))]
(107)

I doubt anybody understands anything by looking at equations (103) and (107). I’ve included them solely for
rigour and so that no other poor soul has to spend an eternity deriving the equations to reproduce, or build
upon, Fig. (20) which visualises d ln ρDM/d ln r. Using the scaling relations from previous sections, a galaxy with
75 km/s ≤ Vfinal ≤ 255 km/s has M∗ and r0 between 2.5 × 1039kg − 4.7 × 1041kg and 4.3 × 1019 − 1.6 ∗ 1020m
respectively. To account for scaling relations’ scatter and the effect of disk thickness - which reduces the ampli-
tude of gbar amplitude but has little effect on its shape - I’ve plotted d ln ρDM/dr ln r (Fig. 20) for galaxies with
a varied combination of M∗ and r0 - including galaxies with unrealistically low and high r0 for their stellar mass.
d ln ρDM/d ln r is not monotonically decreasing in any case as it should be in popular dark matter profile such as
NFW, Burkert, cored isothermal sphere or “DC13” (Di Cintio et al., 2013). For the galaxies with the lowest r0, the
power law exponent, d ln ρDM/d ln r, rises briefly and then falls to −2. For the remaining 20 galaxies, d ln ρDM/d ln r
has more or less the same shape - a steady decline from about −0.75 to −2.25 back up to −2; it is a distinctive shape
completely different from the aforementioned dark matter profiles.

The results of Fig. 20 are significant because MDAR is a universal MOND law. If MOND is correct, observa-
tions made under the assumption of ΛCDM must reproduce the dark matter density profiles implied by Fig. 20.
Therefore, we may finally be able to settle the debate between MOND and dark matter because the two paradigms
disagree on two salient features. First, rotation curves must stay indefinitely flat under MOND, as per equation (94),
where as they must eventually decline under ΛCDM. Furthermore, the implied dark matter density profiles from
ΛCDM have a monotonic decreasing d ln ρDM/d ln r where as those implied by MOND have a characteristic dip to
≈ −2.25 and rise back to −2 for galaxies with moderate to large r0. Both Fig. 20 and dark matter based simulations
agree on one point - the inner dark matter profiles are cuspy, not cored as deduced in observations.

If I had more time, or thought of this idea earlier, I would have liked to explore the effect of the specific MOND
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Figure 20: The graph at column i and row j (counting from the top left corner) contains d ln ρDM/d ln r as per
equations (103) and (107) for a galaxy with M∗ = (2.5× 1039 + (i− 1)× 1041) kg and r0 = (4j − 1)× 1019m
.
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Figure 21: The gas mass to light ratio of Hi selected galaxies forming SINGG. The constant Q model can account
for the trend and scatter in the observed data by varying the value of Q2f between the average and most extreme
values observed in galaxies. The rather extreme value of Q = 4 means Σg is occasionally negative leading to the
unexpected bump in the diagram.

interpolating function on Fig. 20; Milgrom (2016a) shows several functional forms fit MLS16’s data. I would also
have liked to try Sersic profiles, rather than exponential disks, to find gbar to account for a more holistic view of stellar
disks. Similarly, I should try varying prescriptions for a 3D stellar disk just in case it has a significant impact on gbar.
Finally, we must acknowledge neither MOND nor ΛCDM may be correct. Warm dark matter, self-interacting dark
matter, entropic gravity (which is, in effect, an explanation of MOND), Debye gravitational theory etc. all provide
compelling alternatives. The “correct” theory may be any of them, a combination of them or a new idea entirely.

7 Galaxy scaling relations

I still had a few weeks left on my internship by the time we came to be crestfallen with the negligible impact of
stable disks on MDAR. We were left with well calibrated galaxy models, but little to do with them. The prevalence
of scaling relations in astronomy is disconcerting to me. Most of them, including the ones we used, have next to
no physical basis whatsoever. The classic case is the log− log scatter plot with a best fit line whose slope defies all
rational explanation. We agreed explaining galaxy scaling relations, even in terms of more fundamental relations as
with MDAR, would be time well spent. The constant Q model may yet be the physical basis behind some of these
other scaling relations, even though it wasn’t responsible for MDAR.

We had at least one success to report. There is a correlation between the Hi mass to light ratio and Vmax for the
Hi selected galaxies forming SINGG. We converted the observed MHI/LR into Mgas/LR by letting Mgas = 1.3MHI

and compared those values to Mgas/LR from our model where LR comes from equation (15) and Mgas is

Mgas =

∫ Rf

0

2πrΣg(r) dr (108)

with Σg from equation (52) and the integral evaluated numerically. The spiral URC, equation (4), probes Vmax >
70 km/s and the dwarf disk URC, equation (70), probes Vmax < 70 km/s in our model. By letting Q2f = 2, the
average value of Q2f observed in galaxies, our models fit the data very well as seen in Fig. 21. By varying Q2f
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between 1 and 4, some of the most extreme values observed in galaxies, we were able to account for the scatter
in the relation. Therefore, it is very much possible constant Q2f may be driving the trend and scatter in the
log(Mgas/LR)− log(Vmax) relation. Alternatively, since Q2f = 2 results in the best fit to the observed data, one can
see it as justification for choosing Q2f = 2 in our model. Rather than choose the average Q2f observed, we could
have calibrated our model to fit Fig. 21 instead.

Our results have a “kink” in them at Vmax ≈ 210 km/s - the velocity at which the URC transitions from being
strictly increasing to having a decreasing tail. I don’t know if this kink is a physical insight from the constant Q
model or an artefact of the URC. However, the idea of constant Q has revealed a possibility which would never be
detected by simply fitting a line of best fit to a scatter plot.

8 Conclusion

My project finished far from where it began, but I enjoyed the journey nonetheless. It was disappointing our
hypothesis about the constant Q model motivating MDAR failed, but it was perhaphs näıve to assume it would’ve
worked a priori. Our failure simply reflects the far greater number of appealing theories than the number of correct
ones. As Einstein put it, “if we knew what were doing, it wouldn’t be called research.” However, the models we
build in section two are limited, but not incorrect. As we showed in section 7, the constant Q model still has its
merits in explaining galaxy scaling relations and stimulating further study about their properties. Finally, I also
made some remarks about the differences in implied dark matter profiles predicted by MOND and dark matter
simulations. While my results have analytical rigour, I don’t intuitively understand the eccentric shapes in Fig. 20.
I’m still deciding whether I’ve made a mistake - be it algebraic, in my assumptions about a 2D disk, the chosen MOND
interpolating function or something else entirely - or whether I have a result worthy of further exploration. Regarding
the studentship as a whole, I’ve loved listening about all the different work within the astrophysics community (even
if most discussions went way over my head) and I very much appreciate the guidance of Professor Meurer and thank
him for choosing me for this project.
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